

 [image: _images/carrot-logo-big.png]

The lightweight task queue for Django

django-carrot is a lightweight task queue backend for Django projects that uses the RabbitMQ message broker, with an
emphasis on quick and easy configuration and task tracking

Features

	Minimal configuration required

	Task scheduling

	Task prioritization

	Detail task level monitoring/logging via django-carrot monitor

	Built in daemon

	Supports Django 2.0

[image: _images/monitor.png]
logs in django-carrot monitor

Click here to get started

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 carrot	

 	
 	
 carrot.consumer	

 	
 	
 carrot.management.commands.carrot	

 	
 	
 carrot.management.commands.carrot_daemon	

 	
 	
 carrot.models	

 	
 	
 carrot.objects	

 	
 	
 carrot.utilities	

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add_arguments() (carrot.management.commands.carrot.Command method)

 	(carrot.management.commands.carrot_daemon.Command method)

B

 	
 	BaseMessageSerializer (class in carrot.objects)

 	
 	blocking_connection (carrot.objects.VirtualHost attribute)

 	body() (carrot.objects.BaseMessageSerializer method)

C

 	
 	carrot.consumer (module)

 	carrot.management.commands.carrot (module)

 	carrot.management.commands.carrot_daemon (module)

 	carrot.models (module)

 	carrot.objects (module)

 	carrot.utilities (module)

 	close_connection() (carrot.consumer.Consumer method)

 	Command (class in carrot.management.commands.carrot)

 	(class in carrot.management.commands.carrot_daemon)

 	
 	connect() (carrot.consumer.Consumer method)

 	connection_channel (carrot.objects.Message attribute)

 	Consumer (class in carrot.consumer)

 	ConsumerSet (class in carrot.consumer)

 	create_class_view() (in module carrot.utilities)

 	create_function_view() (in module carrot.utilities)

 	create_message() (in module carrot.utilities)

 	create_scheduled_task() (in module carrot.utilities)

D

 	
 	decorate_class_view() (in module carrot.utilities)

 	decorate_function_view() (in module carrot.utilities)

 	
 	DefaultMessageSerializer (class in carrot.objects)

 	delete_pid() (carrot.management.commands.carrot_daemon.Command method)

E

 	
 	emit() (carrot.consumer.ListHandler method)

 	
 	exchange (carrot.models.MessageLog attribute)

F

 	
 	fail() (carrot.consumer.Consumer method)

G

 	
 	get_host_from_name() (in module carrot.utilities)

 	get_message_log() (carrot.consumer.Consumer method)

 	
 	get_mixin() (in module carrot.utilities)

 	get_task() (carrot.objects.BaseMessageSerializer method)

 	get_task_type() (carrot.consumer.Consumer method)

H

 	
 	handle() (carrot.management.commands.carrot.Command method)

 	(carrot.management.commands.carrot_daemon.Command method)

K

 	
 	keywords (carrot.models.MessageLog attribute)

L

 	
 	ListHandler (class in carrot.consumer)

 	
 	LoggingTask (class in carrot.consumer)

M

 	
 	Message (class in carrot.objects)

 	MessageLog (class in carrot.models)

 	
 	MessageLog.DoesNotExist

 	MessageLog.MultipleObjectsReturned

 	MissingPid

O

 	
 	on_bind() (carrot.consumer.Consumer method)

 	on_cancel() (carrot.consumer.Consumer method)

 	on_channel_closed() (carrot.consumer.Consumer method)

 	on_channel_open() (carrot.consumer.Consumer method)

 	on_connection_closed() (carrot.consumer.Consumer method)

 	
 	on_connection_open() (carrot.consumer.Consumer method)

 	on_consumer_cancelled() (carrot.consumer.Consumer method)

 	on_exchange_declare() (carrot.consumer.Consumer method)

 	on_message() (carrot.consumer.Consumer method)

 	on_queue_declare() (carrot.consumer.Consumer method)

P

 	
 	pid (carrot.management.commands.carrot_daemon.Command attribute)

 	PidExists

 	properties() (carrot.objects.BaseMessageSerializer method)

 	
 	publish() (carrot.objects.Message method)

 	publish_kwargs() (carrot.objects.BaseMessageSerializer method)

 	publish_message() (in module carrot.utilities)

R

 	
 	reconnect() (carrot.consumer.Consumer method)

 	
 	requeue() (carrot.models.MessageLog method)

 	run() (carrot.consumer.Consumer method)

S

 	
 	ScheduledTask (class in carrot.models)

 	ScheduledTask.DoesNotExist

 	ScheduledTask.MultipleObjectsReturned

 	serialize_arguments() (carrot.objects.BaseMessageSerializer method)

 	start() (carrot.management.commands.carrot_daemon.Command method)

 	start_consuming() (carrot.consumer.Consumer method)

 	(carrot.consumer.ConsumerSet method)

 	
 	STATUS_CHOICES (carrot.models.MessageLog attribute)

 	stop() (carrot.consumer.Consumer method)

 	(carrot.management.commands.carrot_daemon.Command method)

 	stop_consuming() (carrot.consumer.Consumer method)

 	(carrot.consumer.ConsumerSet method)

T

 	
 	task (carrot.models.MessageLog attribute)

V

 	
 	validate_task() (in module carrot.utilities)

 	
 	VirtualHost (class in carrot.objects)

W

 	
 	write_pid() (carrot.management.commands.carrot_daemon.Command method)

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 django-carrot API

django-carrot API

	django-carrot service

	Further options

	examples

	Custom log/pid file paths

	Running without the scheduler

	Debugging

	Classes and methods

	django-carrot utilities

	The django-carrot consumer backend

	Objects

	django-carrot models

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 The django-carrot consumer backend

The django-carrot consumer backend

This module provides a backend API for creating Consumers and Consumer Sets

	
class carrot.consumer.Consumer(host, queue, logger, name, durable=True, queue_arguments=None, exchange_arguments=None)

	An individual Consumer object. This class is run on a detached thread and watches a specific RabbitMQ queue for
messages, and consumes them when they appear. Multiple Consumers can be linked to the same queue using a
ConsumerSet object.

	
close_connection()

	This method closes the connection to RabbitMQ.

	
connect()

	Connects to the broker

	Return type

	pika.SelectConnection

	
fail(log, err)

	This function is called if there is any kind of error with the .consume() function

	Parameters

	
	log (MessageLog) – the associated MessageLog object

	err (str [https://docs.python.org/3/library/stdtypes.html#str]) – the exception

The exception message is logged, and the MessageLog is updated with the result

	
get_message_log(properties, body)

	Finds and returns the carrot.models.MessageLog object associated with a RabbitMQ message

By default, carrot finds this retrieving the MessageLog UUID from the RabbitMQ message properties.message_id
attribute.

This method can be extended by custom consumers. For example, if you are attempting to consume from a RabbitMQ
queue containing messages that do not come from your Carrot instance, you may want to extend this method to
create, instead of get, a MessageLog object

	Parameters

	
	properties – the message properties

	body – the message body. This is not used by default, but is included so that the function can be
extended in custom consumers.

	Return type

	class:carrot.models.MessageLog or None

In order to avoid different consumers picking up the same message, MessageLogs are only
.. note:

This method does not use self.get_task_type as the intention is to get the MessageLog object before the
consume method tries to do anything else. This means that if any later part of the process fails,
the traceback and exception information can be stored to the MessageLog object for easier debugging.

Warning

If this method fails to find a matching MessageLog object, then the RabbitMQ message will be rejected.
Depending on the configuration of your RabbitMQ queue, this may cause a loss of data. If you are
implementing a custom consumer, then you should use
dead letter exchange [http://www.rabbitmq.com/dlx.html] to preserve your message content

	
get_task_type(properties, body)

	Identifies the task type, by looking up the attribute self.task_type in the message properties

	Parameters

	
	properties – the message properties

	body – the message body. Not used by default, but provided so that the method can be extended if necessary

	Returns

	The task type as a string, e.g. myapp.mymodule.mytask

	
on_bind(*args)

	Invoked when the queue has been successfully bound to the exchange

Parameters are provided by Pika but not required by Carrot

	
on_cancel(*args)

	Invoked when the channel cancel is completed.

Parameters provided by Pika but not required by Carrot

	
on_channel_closed(channel, reply_code, reply_text)

	Called when the channel is closed. Raises a warning and closes the connection

Parameters are provided by Pika but not required by Carrot

	
on_channel_open(channel)

	This function is invoked when the channel is established. It adds a callback in case of channel closure, and
establishes the exchange

	Parameters

	channel (pika.channel.Channel) – The channel object

	
on_connection_closed(*args)

	Callback that gets called when the connection is closed. Checks for the self.shutdown_requested parameter first,
which is used to idenfity whether the shutdown has been requested by the user or not. If not, carrot attempts to
reconnect

All arguments sent to this callback come from Pika but are not required by Carrot

	
on_connection_open(connection)

	Callback that gets called when the connection is opened. Adds callback in case of a closed connection, and
establishes the connection channel

	Parameters

	connection (pika.SelectConnection) – Sent by default by pika but not used by carrot

	
on_consumer_cancelled(method_frame)

	Invoked by pika when RabbitMQ sends a Basic.Cancel for a consumer receiving messages.

	Parameters

	method_frame (pika.frame.Method) – The Basic.Cancel frame

	
on_exchange_declare(*args)

	Invoked when the exchange has been successfully established

Parameters are provided by Pika but not required by Carrot

	
on_message(channel, method_frame, properties, body)

	The process that takes a single message from RabbitMQ, converts it into a python executable and runs it,
logging the output back to the assoicated carrot.models.MessageLog

	Parameters

	
	channel (pika.channel.Channel) – not used

	method_frame (pika.Spec.Basic.Deliver) – contains the delivery tag

	properties (pika.Spec.BasicProperties) – the message properties

	body (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message body

	
on_queue_declare(*args)

	Invoked when the queue has been successfully declared

Parameters are provided by Pika but not required by Carrot

	
reconnect()

	Reconnect to the broker in case of accidental disconnection

	
run()

	Process starts here

	
start_consuming()

	The main consumer process. Attaches a callback to be invoked whenever there is a new message added to the queue

	
stop()

	Cleanly exit the Consumer

	
stop_consuming()

	Stops the consumer and cancels the channel

	
class carrot.consumer.ConsumerSet(host, queue, logger, concurrency=1, name='consumer', consumer_class='carrot.consumer.Consumer')

	Creates and starts a number of Consumer objects. All consumers must belong to the same queue

	Parameters

	
	host – The virtual host where the queue belongs

	queue – The queue name

	concurrency – the number of consumers to create. Defaults to 1

	name – the name to assign to the individual consumers. Will be rendered as Consumer-1, Consumer-2, etc.

	logfile – the path to the log file. Defaults to carrot.log

	loglevel – the logging level. Defaults to logging.DEBUG

	
start_consuming()

	Creates a thread for each concurrency level, e.g. if concurrency is set to 5, 5 threads are created.

A Consumer is attached to each thread and is started

	
stop_consuming()

	Stops all running threads. Loops through the threads twice - firstly, to set the signal to False on all
threads, secondly to wait for them all to finish

If a single loop was used here, the latter threads could still consume new tasks while the parent process waited
for the earlier threads to finish. The second loop allows for quicker consumer stoppage and stops all consumers
from consuming new tasks from the moment the signal is received

	
class carrot.consumer.ListHandler(thread_name, level)

	A logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler] that records each log entry to a python list object, provided that the entry is coming
from the correct thread.

Allows for task-specific logging

	
emit(record)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
class carrot.consumer.LoggingTask(task, logger, thread_name, *args, **kwargs)

	Turns a function into a class with run() method, and attaches a ListHandler logging handler

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 django-carrot models

django-carrot models

	
class carrot.models.MessageLog(*args, **kwargs)

	MessageLogs store information about a carrot task

	Lifecycle:

	
	A carrot.objects.Message object is created and published.

	The act of publishing the message creates a MessageLog object with the status ‘PUBLISHED’. The task now sits
in the RabbitMQ queue until it has been consumed

	When a consumer digests the message, the status is updated to ‘COMPLETED’ if the task completes successfully
or ‘FAILED’ if it encounters an exception. The output, traceback, exception message and logs are written
back to the MessageLog object

	If a task has failed, it can be requeued. Requeueing a task will create a new carrot.objects.Message
object with the same parameters. In this case, the originally MessageLog object will be deleted

	If the task has been completed successfully, it will be deleted three days after completion, provided that
the :function:`carrot.helper_tasks.cleanup` has not been disabled

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
STATUS_CHOICES = (('PUBLISHED', 'Published'), ('IN_PROGRESS', 'In progress'), ('FAILED', 'Failed'), ('COMPLETED', 'Completed'))

	

	
exchange

	the exchange

	
keywords

	Used in carrot.views.MessageView to display the keyword arguments as a table

	
requeue()

	Sends a failed MessageLog back to the queue. The original MessageLog is deleted

	
task

	the import path for the task to be executed

	
class carrot.models.ScheduledTask(*args, **kwargs)

	A model for scheduling tasks to run at a certain interval

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 django-carrot monitor

django-carrot monitor

[image: _images/monitor.png]
django-carrot monitor

Introduction

django-carrot provides a simple interface for managing carrot.models.MessageLog and
carrot.models.ScheduledTask objects, known as the django-carrot monitor. This interface offers the
following functionality:

	Monitoring of tasks currently in the queue

	Viewing the log and traceback of failed tasks, and deleting/requeuing them

	Viewing the log for tasks that have completed successfully

	Allows users to view, edit and create scheduled tasks

	On demand publishing of scheduled tasks

For each task, the monitor displays:

	Basic information about the task, e.g. the virtualhost and queue it has been published to, the priority, and
the dates/times it was published/completed/failed

	The arguments and keyword arguments the task was called with

	Where applicable, the task log, output and error traceback information

Configuration

To enable the django-carrot monitor, simply add the URLs to your project’s main urls.py file:

urlpatterns = [
 ...
 url(r'^django-carrot/', include('django-carrot.urls')),
]

You will now be able to see the monitor at the path you have specified, eg: http://localhost:8000/carrot/

In order to create scheduled tasks using django-carrot monitor, it is also recommended that you specify your task
modules in your Django project’s settings module. This is done as follows:

CARROT = {
 ...
 'task_modules': ['my_app.my_tasks_module'],
}

Authentication

By default, the django-carrot monitor interface is public. However, you can set authentication decorators from your
Django project’s settings module:

CARROT = {
 ...
 'monitor_authentication': ['django.contrib.auth.decorators.login_required'],
}

The above uses Django’s built it django.contrib.auth.decorators.login_required() decorator to ensure that all
users are logged in before attempting to access the monitor. You can also specify your own decorators here.

Usage

Once configured, the monitor can be access from the path /carrot, e.g. http://localhost:8000/carrot

The monitor has 4 tabbed views:

Queued tasks

This view shows all tasks that are currently in the queue and will be processed by the consumer. To see more details about a particular task, click on the relevant row in the list. You will be able to see more details about the task, including where/when it is/was published

Failed tasks

This view shows all tasks that have failed during processing, along with the full log up to the failure, and a full traceback of the issue. Failed tasks can either be requeued or deleted from the queue, either in bulk or individually

Completed tasks

Once tasks have been completed, they will appear in this section. At this point, the full log becomes available. You can use the drop down in the monitor to customize the level of visible logging.

Scheduled tasks

You can manage scheduled tasks in this view.

Use the Create new button to schedule tasks to run at a given interval. The task, queue, interval type and interval count fields are mandatory. You can use the active slider to temporary prevent a scheduled task from running.

[image: _images/create-new.png]
creating scheduled tasks

The positional arguments field must contain a valid list of python arguments. Here are some valid examples of input for this field:

True, 1, 'test', {'foo': 'bar'}

The keyword arguments field must contain valid json serializable content. For example:

{
 "parameter_1": true,
 "parameter_2": null,
 "parameter_3": ["list", "of", "things"],
 "parameter_4": {
 "more": "things"
 }
}

Warning

The keyword arguments input must be JSON, not a Python dict

Note

	All task lists are refreshed every 10 seconds, or when certain actions are performed, e.g. on task deletion/requeue

	Task logs are not available until a task completes or fails. This is because the task log only gets written to your Django project’s database at the end of the process

	New in 0.5.1: Scheduled tasks can now be run on demand by selecting the required task and clicking the Run now button

	New in 1.0.0: Carrot monitor now uses a modern material theme for its interface

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 Objects

Objects

	
class carrot.objects.BaseMessageSerializer(message=None)

	A class that defines how to convert a RabbitMQ message into an executable python function from your Django project,
and back again

	Parameters

	message (Message) – the RabbitMQ message

	
body()

	Returns the content to be added to the RabbitMQ message body

By default, this implementation returns a simple dict in the following format:

{
 'args': ('tuple', 'of', 'positional', 'arguments'),
 'kwargs': {
 'keyword1': 'value',
 'keyword2': True
 }
}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_task(properties, body)

	Identifies the python function to be executed from the content of the RabbitMQ message. By default, Carrot
returns the value of the self.type_header header in the properties.

Once this string has been found, carrot uses importlib to return a callable python function.

	Parameters

	
	properties – the message properties

	body – the message body. This parameter is not used by default, but is provided so that this method can
be extended to identify messages based on the content from the body, instead of the properties, in
custom consumers

	Returns

	a callable python function

	
properties()

	Returns a dict from which a pika.BasicProperties object can be created

In this implementation, the following is returned:
- headers
- content type
- priority
- message id
- message type

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
publish_kwargs()

	Returns a dictionary of keyword arguments to be passed to channel.basic_publish. In this implementation, the
exchange, routing key and message body are returned

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
serialize_arguments(body)

	Extracts positional and keyword arguments to be sent to a function from the message body

	Parameters

	body (str [https://docs.python.org/3/library/stdtypes.html#str]) – the message body as a JSON string

	Returns

	a tuple of the positional and keyword arguments

	
class carrot.objects.DefaultMessageSerializer(message=None)

	

	
class carrot.objects.Message(task, virtual_host=None, queue='default', routing_key=None, exchange='', priority=0, task_args=(), task_kwargs=None)

	A message to publish to RabbitMQ. Takes the following parameters:

	Parameters

	
	task (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to the task to execute, e.g. myapp.mymodule.myfunction

	virtual_host (VirtualHost) – The host containing the queue to publish the message to

	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – the queue name. Will be set to default if not provided

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – the routing key. Defaults to the queue name

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – the RabbitMQ exchange name. Can be blank (i.e. a direct exchange)

	task_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – positional arguments to be passed to the task

	task_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to be sent to the task

	priority (int [https://docs.python.org/3/library/functions.html#int]) – a priority between 0 and 255, where 255 is the highest priority

Note

Your RabbitMQ queue must support message priority for the priority parameter to have any affect. You need to
define the x-max-priority header when creating your RabbitMQ queue to do this. See
Priority Queue Support [https://www.rabbitmq.com/priority.html] for more details. Carrot applies a maximum
priority of 255 by default to all queues it creates automatically.

Warning

You should not attempt to create instances of this object yourself. You should use the
carrot.utilities.create_msg() function instead

	
connection_channel

	Gets or creates the queue, and returns a tuple containing the object’s VirtualHost’s blocking connection,
and its channel

	
publish(pika_log_level=40)

	Publishes the message to RabbitMQ queue and creates a MessageLog object so the progress of the task can be
tracked in the Django project’s database

	Parameters

	pika_log_level (logging level) – the pika log level to set. defaults to logging.ERROR

	
class carrot.objects.VirtualHost(url=None, host='localhost', name='%2f', port=5672, username='guest', password='guest', secure=False)

	A RabbitMQ virtual host. Takes the following parameters:

	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – The url to the host, e.g. 192.168.0.1 or localhost

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The virtual host name, eg “myvirtualhost”

	port (int [https://docs.python.org/3/library/functions.html#int]) – defaults to 5672

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – RabbitMQ username

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – RabbitMQ password

	secure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to use SSL. Defaults to False

	
blocking_connection

	Connect to the VHOST

	Returns

	a pika.BlockingConnection object

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 Getting started

Getting started

Install django-carrot

Install with pip

pip install django-carrot

Install RabbitMQ

Install and start RabbitMQ:

brew install rabbitmq
brew services start rabbitmq

Configuring your Django project

	Add carrot to your Django project’s settings module:

INSTALLED_APPS = [
 ...
 'carrot',
 ...
]

	Apply django-carrot’s migrations them to your project’s database:

python manage.py migrate carrot

For see all configuration options, refer to django-carrot configuration

Starting the service

Once you have configured django-carrot, you can start the service using the following django-admin command:

python manage.py carrot_daemon start

The daemon can be stopped/restarted as follows:

python manage.py carrot_daemon stop
python manage.py carrot_daemon restart

For the full set of options, refer to django-carrot service

Creating and publishing tasks

While the service is running, tasks will be consumed from your RabbitMQ queue. To test this, start the django shell:

python manage.py shell

And use the provided helper, carrot.utilities.publish_message:

from carrot.utilities import publish_message

def my_task(**kwargs):
 return 'hello world'

publish_message(my_task, hello=True)

The above will publish the my_task function to the default carrot queue. Once consumed, it will be
called with the keyword argument hello=True

Task logging

In order to view the task output in django-carrot monitor, you will need to use Carrot’s logger object. This is done
as follows:

from carrot.utilities import publish_message
import logging

logger = logging.getLogger('carrot')

def my_task(**kwargs):
 logger.debug('hello world')
 logger.info('hello world')
 logger.warning('hello world')
 logger.error('hello world')
 logger.critical('hello world')

publish_message(my_task, hello=True)

This will be rendered as follows in the carrot monitor output for this task:

[image: _images/task-logging.png]
logs in django-carrot monitor

Note

By default, Carrot Monitor only shows log entries with a level of info or higher. The entry logged with
logger.debug only becomes visible if you change the Log level drop down

Scheduling tasks

Scheduled tasks are stored in your Django project’s database as ScheduledTask objects. The Carrot service will
publish tasks to your RabbitMQ queue at the required intervals. To scheduled the my_task function to run every 5
seconds, use the following code:

from carrot.utilities import create_scheduled_task

create_scheduled_task(my_task, {'seconds': 5}, hello=True)

The above will publish the my_task function to the queue every 5 seconds

Tasks can also be scheduled via the django-carrot monitor

The Carrot monitor

	Carrot comes with it’s own monitor view which allows you to:

	
	View the list of queued tasks

	View the traceback of failed tasks, and push them back into the message queue

	View the traceback and output of successfully completed tasks

To implement it, simply add the carrot url config to your Django project’s main url file:

urlpatterns = [
 ...
 url(r'^carrot/', include('carrot.urls')),
]

For more information, refer to django-carrot monitor

Docker

A sample docker config is available here [https://github.com/chris104957/django-carrot-docker]

Support

If you are having issues, please Log an issue [https://github.com/chris104957/django-carrot/issues/new] and add the help wanted label

License

The project is licensed under the Apache license.

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 release notes

release notes

1.2.0

	Issue #81: Carrot monitor breaks when the queue from a completed message log gets removed from the config [https://github.com/chris104957/django-carrot/issues/81]

	Issue #79: Add unique task_name field to ScheduledTask object [https://github.com/chris104957/django-carrot/issues/79]

	Issue #78: Carrot service should warn users when process is already running [https://github.com/chris104957/django-carrot/issues/78]

	Issue #77: Update the docs to make it clear tasks must be published from within the Django context [https://github.com/chris104957/django-carrot/issues/77]

Warning

This release contains new migrations. In order to upgrade from a previous version of carrot, you must apply them:

python manage.py migrate carrot

1.1.3

	Issue #75: Add a link to the docker container sample to the docs [https://github.com/chris104957/django-carrot/issues/75]

1.1.2

	Doc updates

1.1.1

Bug fixes

	Issue #72: Migrations end up inside venv? [https://github.com/chris104957/django-carrot/issues/72]

1.1.0

Bug fixes

	Issue #56: Have Django host VueJS resources instead of CDN [https://github.com/chris104957/django-carrot/issues/56]

	Issue #66: Switching between monitor views quickly shows tasks in the wrong list [https://github.com/chris104957/django-carrot/issues/66]

	Issue #67: Simply the version management [https://github.com/chris104957/django-carrot/issues/67]

	Issue #68: Simplify the readmes [https://github.com/chris104957/django-carrot/issues/68]

1.0.0

Monitor material theme

Added a material theme to the django-carrot monitor:

[image: _images/monitor.png]
material theme django-carrot monitor

Failure hooks

Implemented failure hooks, which run when a task fails. This can be used to re-queue a failed task a certain number
of times before raising an exception. For example:

my_project/my_app/consumer.py

from carrot.utilities import publish_message

def failure_callback(log, exception):
 if log.task == 'myapp.tasks.retry_test':
 logger.critical(log.__dict__)
 attempt = log.positionals[0] + 1
 if attempt <= 5:
 log.delete()
 publish_message('myapp.tasks.retry_test', attempt)

class CustomConsumer(Consumer):
 def __init__(self, host, queue, logger, name, durable=True, queue_arguments=None, exchange_arguments=None):
 super(CustomConsumer, self).__init__(host, queue, logger, name, durable, queue_arguments, exchange_arguments)
 self.add_failure_callback(failure_callback)

my_project/my_app/tasks.py

def retry_test(attempt):
 logger.info('ATTEMPT NUMBER: %i' % attempt)
 do_stuff() # this method fails, because it isn't actually defined in this example

my_project/my_project/settings.py

CARROT = {
 'default_broker': vhost,
 'queues': [
 {
 'name': 'default',
 'host': vhost,
 'consumer_class': 'my_project.consumer.CustomConsumer',
 }
]
}

Bug fixes

	Issue #43: During high server load periods, messages sometimes get consumed before the associated MessageLog is created [https://github.com/chris104957/django-carrot/issues/43]

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 django-carrot service

django-carrot service

Carrot implements two manage.py commands in your django app - carrot and carrot_daemon

The carrot command is the base service which starts consuming messages from your defined RabbitMQ brokers, and
publishing any active scheduled tasks at the required intervals

carrot_daemon is a daemon which can be used the invoke the carrot service as a detached process, and allows
users to stop/restart the service safely, and to check the status. carrot_daemon can be invoked as follows:

python manage.py carrot_daemon start
python manage.py carrot_daemon stop
python manage.py carrot_daemon restart
python manage.py carrot_daemon status

Further options

The following additional arguments are also available:

	–logfile

	path to the log file. Defaults to /var/log/carrot.log

	–pidfile

	path to the pid file. Defaults to /var/run/carrot.pid

	–no-scheduler

	run the carrot service without the scheduler (only consumes tasks)

	–testmode

	Used for running the carrot tests. Not applicable for most users

	–loglevel

	The level of logging to use. Defaults to DEBUG and shouldn’t be changed under most circumstances

examples

Custom log/pid file paths

On some systems you may encounter OS errors while trying to run the service with the default log/pid file locations.
This can be fixed by specifying your own values for these paths:

python manage.py carrot_daemon start --logfile carrot.log --pidfile carrot.pid

Warning

If you use a custom pid, you must also provide this same argument when attempting to stop, restart or check the
status of the carrot service

Running without the scheduler

Use the following to disabled ScheduledTasks

python manage.py carrot_daemon --no-scheduler

Debugging

Using the carrot_daemon will run in detached mode with no sys.out visible. If you are having issues getting the
service working properly, or want to check your broker configuration, you can use the carrot command instead, as
follows:

python manage.py carrot

You will be able to read the system output using this command, which should help you to resolve any issues

Note

The carrot command does not accept the pidfile or mode (e.g. start, stop, restart, status) arguments. No
pid file gets created in this mode, and the process is the equivalent of carrot_daemon start. To stop the
process, simply use CTRL+C

Classes and methods

	
class carrot.management.commands.carrot_daemon.Command(stdout=None, stderr=None, no_color=False)

	The daemon process for controlling the carrot.management.commands.carrot service

	
add_arguments(parser)

	This Command inherits the same arguments as carrot.management.commands.carrot.Command, with the
addition of one positional argument: mode

	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Must be “start”, “stop”, “restart” or “status”

	
delete_pid()

	Deletes the pid file, if it exists

	
handle(*args, **options)

	The main handler. Initiates CarrotService, then handles it based on the options supplied

	Parameters

	options – handled by argparse

	
pid

	Opens and reads the file stored at self.pidfile, and returns the content as an integer. If the pidfile doesn’t
exist, then None is returned.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
start(**options)

	Starts the carrot service as a subprocess and records the pid

	
stop(hard_stop=False)

	Attempts to stop the process. Performs the following actions:

	Asserts that the pidfile exists, or raises a MissingPid exception

	Runs :function:`os.kill` on a loop until an OSError [https://docs.python.org/3/library/exceptions.html#OSError] is raised.

	Deletes the pidfile once the process if no longer running

If hard_stop is used, the process will not wait for the consumers to finish running their current tasks

	Parameters

	hard_stop (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, sends a sigkill instead of a sigterm to the consumers

	
write_pid(pid)

	Writes the pid to the pidfile

	
exception carrot.management.commands.carrot_daemon.MissingPid

	

	
exception carrot.management.commands.carrot_daemon.PidExists

	

	
class carrot.management.commands.carrot.Command(stdout=None, stderr=None, nocolor=False)

	The main process for creating and running carrot.consumer.ConsumerSet objects and starting thes scheduler

	
add_arguments(parser)

	Entry point for subclassed commands to add custom arguments.

	
handle(**options)

	The actual handler process. Performs the following actions:

	Initiates and starts a new carrot.objects.ScheduledTaskManager, which schedules all active

carrot.objects.ScheduledTask instances to run at the given intervals. This only happens if the
–no-scheduler argument has not been provided - otherwise, the service only creates consumer objects

	Loops through the queues registered in your Django project’s settings module, and starts a

new carrot.objects.ConsumerSet for them. Each ConsumerSet will contain n
carrot.objects.Consumer objects, where n is the concurrency setting for the given queue (as
defined in the Django settings)

	Enters into an infinite loop which monitors your database for changes to your database - if any changes

to the carrot.objects.ScheduledTask queryset are detected, carrot updates the scheduler
accordingly

On receiving a KeyboardInterrupt, SystemExit or SIGTERM, the service first turns off each of the
schedulers in turn (so no new tasks can be published to RabbitMQ), before turning off the Consumers in turn.
The more Consumers/ScheduledTask objects you have, the longer this will take.

	Parameters

	options – provided by argparse (see above for the full list of available options)

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 django-carrot configuration

django-carrot configuration

django-carrot is configured via your Django project’s settings modules. All possible configuration options are listed in
this page. All configuration options are inserted as follows:

CARROT = {
 ...
}

default_broker

	default value

	amqp://guest:guest@localhost:5672/

	type

	str or dict

Carrot needs to be able to connect to at least one RabbitMQ broker in order to work. The default broker can either be
provided as a string:

CARROT = {
 'default_broker': 'amqp://myusername:mypassword@192.168.0.1:5672/my-virtual-host'
}

or alternatively, in the following format:

CARROT = {
 'default_broker': {
 'host': '192.168.0.1', # host of your RabbitMQ server
 'port': 5672, # your RabbitMQ port. The default is 5672
 'name': 'my-virtual-host', # the name of your virtual host. Can be omitted if you do not use VHOSTs
 'username': 'my-rabbit-username', # your RabbitMQ username
 'password': 'my-rabbit-password', # your RabbitMQ password
 'secure': False # Use SSL
 }
 }

queues

	default value

	[]

	type

	list

django-carrot will automatically create a queue called default. However, you may wish to define your own queues in
order to access additional functionality such as:

	Sending tasks to different queues

	Increasing the number of consumers attached to each queue

To define your own queues, add a list of queues to your carrot configuration:

CARROT = {
 'queues': [
 {
 'name': 'my-queue-1',
 'host': 'amqp://myusername:mypassword@192.168.0.1:5672/my-virtual-host',
 'concurrency': 5,
 },
 {
 'name': 'my-queue-2',
 'host': 'amqp://myusername:mypassword@192.168.0.1:5672/my-virtual-host-2',
 'consumable': False,
 },
]
}

Each queue supports the following configuration options:

	name

	the queue name, as a string

	host

	the queue host. Can either be a URL as a string (as in the above example) or a dict in the following format:

'name':'my-queue',
'host': {
 'host': '192.168.0.1',
 'port': 5672,
 'name': 'my-virtual-host',
 'username': 'my-rabbit-username',
 'password': 'my-rabbit-password',
 'secure': False
 }

	concurrency

	the number of consumers to be attached to the queue, as an integer. Defaults to 1

	consumable

	Whether or not the service should consume messages in this queue, as a Boolean. Defaults to True

task_modules

	default value

	[]

	type

	list

This setting is required while using django-carrot monitor and should point at the python module where your tasks
are kept. It will populate the task selection drop down while creating/editing scheduled tasks:

[image: _images/with-task-modules.png]
with task modules

The task_modules option is used to enable this functionality. It can be added to the Carrot configuration as follows:

CARROT = {
 ...
 'task_modules': ['myapp.mymodule', 'myapp.myothermodule',]
}

monitor_authentication

	default

	[]

	type

	list

By default, all views provided by Configuration are public. If you want to limit access to these
views to certain users of your Django app, you can list the decorators to apply to these views. This is done with the
monitor_authentication setting:

CARROT = {
 'monitor_authentication': ['django.contrib.auth.decorators.login_required', 'myapp.mymodule.mydecorator']
}

The above example will apply Django’s login_required() decorator to all of Carrot monitor’s views, as well as
whatever custom decorators you specify.

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY

 django-carrot utilities

django-carrot utilities

This module contains a number of helper functions for performing basic Carrot functions, e.g. publish, schedule and
consume

Most users should use the functions defined in this module, rather than attempting to subclass the base level objects

	
carrot.utilities.create_class_view(view, decorator)

	Applies a decorator to the dispatch method of a given class based view. Can be chained

	Parameters

	
	view (class) – the class-based view to apply the decorator to

	decorator (function) – the decorator to apply

	Return type

	the updated class based view

	
carrot.utilities.create_function_view(view, decorator)

	Similar to create_class_view(), but attaches a decorator to a function based view, instead of a class-based
one

	Parameters

	
	view (func) – the function based view to attach a decorator tio

	decorator (func) – the decorator attach

	Return type

	the updated view function

	
carrot.utilities.create_message(task, priority=0, task_args=(), queue=None, exchange='', routing_key=None, task_kwargs=None)

	Creates a carrot.objects.Message object without publishing it

The task to execute (as a string or a callable) needs to be supplied. All other arguments are optional
:param task: the task to be handled asynchronously.
:type task: str or func
:param int priority: the priority to be applied to the message when it is published to RabbitMQ

	Parameters

	
	task_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the positional arguments to be passed to the function when it is called

	queue (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – the name of the queue to publish the message to. Will be set to “default” if not provided

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – the exchange name

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str] or NoneType) – the routing key

	task_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the keyword arguments to be passed to the function when it is called

	Return type

	carrot.objects.Message

	
carrot.utilities.create_scheduled_task(task, interval, queue=None, **kwargs)

	Helper function for creating a carrot.models.ScheduledTask

	Parameters

	
	task (str [https://docs.python.org/3/library/stdtypes.html#str] or callable) – a callable, or a valid path to one as a string

	interval (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the interval at which to publish the message, as a dict, e.g.: {‘seconds’: 5}

	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the queue to publish the message to.

	kwargs – the keyword arguments to be passed to the function when it is executed

	Return type

	carrot.models.ScheduledTask

	
carrot.utilities.decorate_class_view(view_class, decorators=None)

	Loop through a list of string paths to decorator functions, and call create_class_view() for each one

	Parameters

	
	view_class (class) – the class-based view to attach the decorators to

	decorators (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of string decorators, e.g. [‘myapp.mymodule.decorator1’, ‘myapp.mymodule.decorator2’]

	Returns

	the class based view with all decorators attached to the dispatch method

	
carrot.utilities.decorate_function_view(view, decorators=None)

	Similar to decorate_class_view(), but for function based views

	
carrot.utilities.get_host_from_name(name)

	Gets a host object from a given queue name based on the Django configuration

If no queue name is provided (as may be the case from some callers), this function returns a VirtualHost based on
the CARROT.default_broker value.

May raise an exception if the given queue name is not registered in the settings.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the queue to lookup.

	Return type

	carrot.objects.VirtualHost

	
carrot.utilities.get_mixin(decorator)

	Helper function that allows dynamic application of decorators to a class-based views

	Parameters

	decorator (func) – the decorator to apply to the view

	Returns

	

	
carrot.utilities.publish_message(task, *task_args, priority=0, queue=None, exchange='', routing_key=None, **task_kwargs)

	Wrapped for create_message(), which publishes the task to the queue

This function is the primary method of publishing tasks to a message queue

	
carrot.utilities.validate_task(task)

	Helper function for dealing with task inputs which may either be a callable, or a path to a callable as a string

In case of a string being provided, this function checks whether the import path leads to a valid callable

Otherwise, the callable is converted back into a string (as the carrot.objects.Message requires a string
input)

This function is used by the following other utility functions:
- create_scheduled_task()
- create_message()

	Parameters

	task (str [https://docs.python.org/3/library/stdtypes.html#str] or callable) – a callable or a path to one as a string

	Returns

	a validated path to the callable, as a string

 Back to top

 © Copyright 2017-2018, Christopher Davies
 Created using Sphinx 1.3.6.
 Icons made by Trinh Ho from www.flaticon.com is licensed by CC 3.0 BY
 _static/up-pressed.png

_images/carrot-logo-big.png
&

django-carrot

_static/up.png

_images/task-logging.png
<>

13/03/2018, 15:07:25

13/03/2018, 15:07:25

13/03/2018, 15:07:25

13/03/2018, 15:07:25

debug

info

error

critical

_images/with-task-modules.png
task*

default.tasks.hello a

default.tasks.all_languages_post

_images/create-new.png
task*

Positional arguments

Keyword arguments

Queue*

Exchange Routing key

© Every*

Interval type* -

v. Active

- SAVE CHANGES

_images/monitor.png
